题目内容
【题目】如图,将边长为6cm的正方形ABCD折叠,使点D落在AB边的中点E处,折痕为FH,点C落在Q处,EQ与BC交于点G,则△EBG的周长是 cm.
【答案】12cm
【解析】
试题分析:设AF=x,则DF=6﹣x,由折叠的性质可知:EF=DF=6﹣x,在Rt△AFE,由勾股定理可求得:x=,然后再证明△FAE∽△EBG,从而可求得BG=4,接下来在Rt△EBG中,由勾股定理可知:EG=5,从而可求得△EBG的周长为12cm.
解:设AF=x,则DF=6﹣x,由折叠的性质可知:EF=DF=6﹣x.
在Rt△AFE,由勾股定理可知:EF2=AF2+AE2,即(6﹣x)2=x2+32,
解得:x=.
∵∠FEG=90°,
∴∠AEF+∠BEG=90°.
又∵∠BEG+∠BGE=90°,
∴∠AEF=∠BGE.
又∵∠EAF=∠EBG,
∴△FAE∽△EBG.
∴,即.
∴BG=4.
在Rt△EBG中,由勾股定理可知:EG===5.
所以△EBG的周长=3+4+5=12cm.
练习册系列答案
相关题目