题目内容
【题目】定义:对于实数a,符号[a]表示不大于a的最大整数,例如:[4.7]=4,[﹣π]=﹣4,[3]=3,如果[ +1]=﹣5,则x的取值范围为 .
【答案】﹣20≤x<﹣17
【解析】解:∵[ +1]=﹣5, ∴﹣5≤ +1<﹣4,
解得:﹣20≤x<﹣17,
所以答案是:﹣20≤x<﹣17.
【考点精析】根据题目的已知条件,利用一元一次不等式组的解法的相关知识可以得到问题的答案,需要掌握解法:①分别求出这个不等式组中各个不等式的解集;②利用数轴表示出各个不等式的解集;③找出公共部分;④用不等式表示出这个不等式组的解集.如果这些不等式的解集的没有公共部分,则这个不等式组无解 ( 此时也称这个不等式组的解集为空集 ).
练习册系列答案
相关题目
【题目】如图,观察图形并解答问题.
(1)按如表已填写的形式填写表中的空格,答案写在相应的序号后面:
图① | 图② | 图③ | |
三个角上三个数的积 | 1×(﹣1)×2=﹣2 | (﹣3)×(﹣4)×(﹣5)=﹣60 | ② |
三个角上三个数的和 | 1+(﹣1)+2=2 | (﹣3)+(﹣4)+(﹣5)=﹣12 | ③ |
积与和的商 | (﹣2)÷2=﹣1 | ④ | ④ |
(2)请用你发现的规律求出图④中的数x.
【题目】某商店需要购进甲、乙两种商品共180件,其进价和售价如表:(注:获利=售价﹣进价)
甲 | 乙 | |
进价(元/件) | 14 | 35 |
售价(元/件) | 20 | 43 |
(1)若商店计划销售完这批商品后能获利1240元,问甲、乙两种商品应分别购进多少件?
(2)若商店计划投入资金少于5040元,且销售完这批商品后获利多于1312元,请问有哪几种购货方案?并直接写出其中获利最大的购货方案.