题目内容
古希腊著名的毕达哥拉斯学派把1、3、6、10 …,这样的数称为“三角形数”,而把1、4、9、16…,这样的数称为“正方形数”.
(1)第5个三角形数是______,第n个“三角形数”是______,第5个“正方形数”是______,第n个正方形数是______;
(2)经探究我们发现:任何一个大于1的“正方形数”都可以看作两个相邻“三角形数”之和.
例如:①4=1+3,②9=3+6,③16=6+10,④______,⑤______,….
请写出上面第4个和第5个等式;
(3)在(2)中,请探究第n个等式,并证明你的结论.
解:(1)15,,25,n2;
(2)25=10+15,36=15+21;
(3),
∵右边=
=
=n2+2n+1=(n+1)2=左边,
∴原等式成立.
故答案为15,,25,n2;25=10+15,36=15+21.
分析:(1)观察发现,第5个三角形数等于第4个三角形数加上5,即为15,第n个“三角形数”等于第(n-1)个“三角形数”加上n,即为1+2+3+…+n,计算即可;第5个“正方形数”是52,第n个正方形数是n2;
(2)根据①4=1+3,②9=3+6,③16=6+10即可得出第4个等式为第5个三角形数等于第4个三角形数加上第5个三角形数,第5个等式为第6个三角形数等于第5个三角形数加上第6个三角形数;
(3)第n个等式为第(n+1)个“三角形数”等于第n个“三角形数”加上第(n+1)个“三角形数”.
点评:本题考查了整式的混合运算及规律型:数字的变化类,首先要观察出“三角形数”和“正方形数”的变化规律,再根据规律解题.
(2)25=10+15,36=15+21;
(3),
∵右边=
=
=n2+2n+1=(n+1)2=左边,
∴原等式成立.
故答案为15,,25,n2;25=10+15,36=15+21.
分析:(1)观察发现,第5个三角形数等于第4个三角形数加上5,即为15,第n个“三角形数”等于第(n-1)个“三角形数”加上n,即为1+2+3+…+n,计算即可;第5个“正方形数”是52,第n个正方形数是n2;
(2)根据①4=1+3,②9=3+6,③16=6+10即可得出第4个等式为第5个三角形数等于第4个三角形数加上第5个三角形数,第5个等式为第6个三角形数等于第5个三角形数加上第6个三角形数;
(3)第n个等式为第(n+1)个“三角形数”等于第n个“三角形数”加上第(n+1)个“三角形数”.
点评:本题考查了整式的混合运算及规律型:数字的变化类,首先要观察出“三角形数”和“正方形数”的变化规律,再根据规律解题.
练习册系列答案
相关题目