题目内容
【题目】已知:如图,△ABC是等边三角形,点D、E分别是边BC、CA上的点,且BD=CE,AD、BE相交于点O.
(1)求证:△BAE≌△ACD;
(2)求∠AOB的度数.
【答案】(1)证明见解析(2)120°
【解析】
试题(1)根据等边三角形的性质求出∠BAC=∠C=60°,AC=BC,求出AE=CD,根据SAS推出全等即可;
(2)根据全等三角形的性质求出∠CAD=∠ABE,根据三角形外角性质求出∠AOE=∠BAC=60°,即可得出答案.
试题解析:(1)∵△ABC是等边三角形,
∴∠BAC=∠C=60°,BC=AC,
∵BD=CE,
∴BC-BD=AC-CE,
∴AE=CD,
在△ACD和△BAE中
∴△ACD≌△BAE(SAS);
(2)∵△ACD≌△BAE,
∴∠CAD=∠ABE,
∴∠AOE=∠BAD+∠ABE=∠BAD+∠CAD=∠BAC=60°,
∴∠AOB=180°-60°=120°.
练习册系列答案
相关题目