题目内容

如图,把长方形ABCD沿BD对折,使C点落在C′的位置时,BC′与AD交于E,若AB=6cm,BC=8cm,则重叠部分△BED的面积是


  1. A.
    数学公式
  2. B.
    数学公式
  3. C.
    数学公式
  4. D.
    15
A
分析:首先根据正方形与折叠的性质,证得△BDE是等腰三角形,然后利用勾股定理与方程思想求得AE的长,则由重叠部分△BED的面积是S△ABD-S△ABE,求解即可得到答案.
解答:∵四边形ABCD是矩形,
∴∠A=90°,AD=BC=8cm,AD∥BC,
∴∠EDB=∠DBC,
∵长方形ABCD沿BD对折,使C点落在C’的位置时,
∴∠EBD=∠CBD,BC′=BC=8cm,
∴∠EBD=∠EDB,
∴EB=ED,
设AE=xcm,则EB=ED=(8-x)cm,
在Rt△ABE中,
∵AB2+AE2=BE2
∴36+x2=(8-x)2
∴x=
∴AE=
∴重叠部分△BED的面积是:S△ABD-S△ABE=AB•AD-AB•AE=×6×8-×6×=
故选A.
点评:此题考查了折叠的性质、正方形的性质以及等腰三角形的判定与性质.解题的关键是数形结合思想的应用.
练习册系列答案
相关题目
(2012•盐都区一模)问题提出
我们在分析解决某些数学问题时,经常要比较两个数或代数式的大小,而解决问题的策略一般要进行一定的转化,其中“作差法”就是常用的方法之一.所谓“作差法”:就是通过作差、变形,并利用差的符号确定他们的大小,即要比较代数式M、N的大小,只要作出它们的差M-N,若M-N>0,则M>N;若M-N=0,则M=N;若M-N<0,则M<N.
问题解决
如图1,把边长为a+b(a≠b)的大正方形分割成两个边长分别是a、b的小正方形及两个矩形,试比较两个小正方形面积之和M与两个矩形面积之和N的大小.
解:由图可知:M=a2+b2,N=2ab.
∴M-N=a2+b2-2ab=(a-b)2
∵a≠b,∴(a-b)2>0.
∴M-N>0.
∴M>N.
类比应用
(1)已知:多项式M=2a2-a+1,N=a2-2a.试比较M与N的大小.
(2)已知:如图2,锐角△ABC (其中BC为a,AC为b,AB为c)三边满足a<b<c,现将△ABC 补成长方形,使得△ABC的两个顶
点为长方形的两个端点,第三个顶点落在长方形的这一边的对边上.
①这样的长方形可以画
3
3
个;
②所画的长方形中哪个周长最小?为什么?
拓展延伸
已知:如图3,锐角△ABC(其中BC为a,AC为b,AB为c)三边满足a<b<c,画其BC边上的内接正方形EFGH,使E、F两点在边BC上,G、H分别在边AC、AB上,同样还可画AC、AB边上的内接正方形,问哪条边上的内接正方形面积最大?为什么?


【问题提出】我们在分析解决某些数学问题时,经常要比较两个数或代数式的大小,而解决问题的策略一般要进行一定的转化,其中“作差法”就是常用的方法之一.所谓“作差法”:就是通过作差、变形,并利用差的符号确定他们的大小,即要比较代数式M、N的大小,只要作出它们的差M-N,若M-N>0,则M>N;若M-N=0,则M=N;若M-N<0,则M<N.
【问题解决】如图1,把边长为a+b(a≠b)的大正方形分割成两个边长分别是a、b的小正方形及两个矩形,试比较两个小正方形面积之和M与两个矩形面积之和N的大小.

解:由图可知:

∵a≠b,∴>0.
∴M-N>0.∴M>N.
【类比应用】(1)已知:多项式M =2a2-a+1 ,N =a2-2a .
试比较M与N的大小.
(2)已知:如图2,锐角△ABC (其中BC为a ,AC为 b,
AB为c)三边满足a <b < c ,现将△ABC 补成长方形,
使得△ABC的两个顶点为长方形的两个端点,第三个顶点落
在长方形的这一边的对边上。
 
①这样的长方形可以画     个;
②所画的长方形中哪个周长最小?为什么?
【拓展延伸】 已知:如图,锐角△ABC (其中BC为a,AC为b,AB为c)三边满足a <b < c ,画其BC边上的内接正方形EFGH , 使E、F两点在边BC上,G、H分别在边AC、AB上,同样还可画AC、AB边上的内接正方形,问哪条边上的内接正方形面积最大?为什么?

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网