题目内容
【题目】如图,AB为⊙O的直径,AB=AC,BC交⊙O于点D, AC交⊙O于点E,∠BAC=45°。
(1)求∠EBC的度数;
(2)求证:BD=CD。
【答案】(1)∠EBC=22.5°.(2)证明见解析
【解析】试题分析:(1)∠EBC的度数等于∠ABC﹣∠ABE,因而求∠EBC的度数就可以转化为求∠ABC和∠ABE,根据等腰三角形的性质等边对等角,就可以求出.
(2)在等腰三角形ABC中,根据三线合一定理即可证得.
试题解析:(1)∵AB是⊙O的直径,
∴∠AEB=90°.
又∵∠BAC=45°,
∴∠ABE=45°.
又∵AB=AC,
∴∠ABC=∠C=67.5°.
∴∠EBC=22.5°.
(2)连接AD,
∵AB是⊙O的直径,
∴∠ADB=90°.
∴AD⊥BC.
又∵AB=AC,
∴BD=CD.
练习册系列答案
相关题目