题目内容
如图所示,将含30°角的直角三角尺绕点顺时针旋转150°后得到△,连结.若. 则△的面积为 .
解:过D点作BE的垂线,垂足为F,
∵∠ABC=30°,∠ABE=150°
∴∠CBE=∠ABC+∠ABE=180°,
∵在Rt△ABC中,AB=4,∠ABC=30°,
∴AC=2,BC=2,
由旋转的性质可知BD=BC=2,DE=AC=2,BE=AB=4,
由DF×BE=BD×DE,即DF×4=2×2,
解得DF=,
S△BCD=×BC×DF=×2×=3cm2..
故答案为:3cm2.
∵∠ABC=30°,∠ABE=150°
∴∠CBE=∠ABC+∠ABE=180°,
∵在Rt△ABC中,AB=4,∠ABC=30°,
∴AC=2,BC=2,
由旋转的性质可知BD=BC=2,DE=AC=2,BE=AB=4,
由DF×BE=BD×DE,即DF×4=2×2,
解得DF=,
S△BCD=×BC×DF=×2×=3cm2..
故答案为:3cm2.
练习册系列答案
相关题目