题目内容
【题目】如图,AD是△ABC一边上的高,BF⊥AC,BE=AC.(1)求证:AD=BD;(2)若∠C=65°,求∠ABE的度数.
【答案】(1)证明见解析;(2)20°
【解析】试题分析:(1)利用同角的余角相等求出∠C=∠BED,再利用“角角边”证明△ACD和△BED全等,根据全等三角形对应边相等证明即可;
(2)根据直角三角形两锐角互余求出∠FBC,再求出△ABD是等腰直角三角形,根据等腰直角三角形的性质求出∠ABD=45°,再根据∠ABE=∠ABD-∠CBF代入数据计算即可得解.
试题解析:(1)证明:∵AD是△ABC一边上的高,BF⊥AC,
∴∠C+∠CBE=90°,
∠BED+∠CBE=90°,
∴∠C=∠BED,
在△ACD和△BED中,
∴△ACD≌△BED(AAS),
∴AD=BD;
(2)∵BF⊥AC,
∴∠CBF=90°-∠C=90°-65°=25°,
∵AD⊥BC,AD=BD,
∴△ABD是等腰直角三角形,
∴∠ABD=45°,
∴∠ABE=∠ABD-∠CBF=45°-25°=20°.
【题目】问题提出:用n根相同的木棒搭一个三角形(木棒无剩余),能搭成多少种不同的等腰三角形?
问题探究:不妨假设能搭成种不同的等腰三角形,为探究之间的关系,我们可以从特殊入手,通过试验、观察、类比,最后归纳、猜测得出结论.
探究一:
(1)用3根相同的木棒搭成一个三角形,能搭成多少种不同的三角形?
此时,显然能搭成一种等腰三角形。所以,当时,
(2)用4根相同的木棒搭成一个三角形,能搭成多少种不同的三角形?
只可分成1根木棒、1根木棒和2根木棒这一种情况,不能搭成三角形
所以,当时,
(3)用5根相同的木棒搭成一个三角形,能搭成多少种不同的三角形?
若分成1根木棒、1根木棒和3根木棒,则不能搭成三角形
若分为2根木棒、2根木棒和1根木棒,则能搭成一种等腰三角形
所以,当时,
(4)用6根相同的木棒搭成一个三角形,能搭成多少种不同的三角形?
若分成1根木棒、1根木棒和4根木棒,则不能搭成三角形
若分为2根木棒、2根木棒和2根木棒,则能搭成一种等腰三角形
所以,当时,
综上所述,可得表①
3 | 4] | 5 | 6 | |
1 | 0 | 1 | 1 |
探究二:
(1)用7根相同的木棒搭成一个三角形,能搭成多少种不同的等腰三角形?
(仿照上述探究方法,写出解答过程,并把结果填在表②中)
(2)分别用8根、9根、10根相同的木棒搭成一个三角形,能搭成多少种不同的等腰三
角形?(只需把结果填在表②中)
7 | 8 | 9 | 10 | |
你不妨分别用11根、12根、13根、14根相同的木棒继续进行探究,……
解决问题:用根相同的木棒搭一个三角形(木棒无剩余),能搭成多少种不同的等腰三角形?
(设分别等于、、、,其中是整数,把结果填在表③中)
问题应用:用2016根相同的木棒搭一个三角形(木棒无剩余),能搭成多少种不同的等腰三角形?(要求写出解答过程)其中面积最大的等腰三角形每个腰用了__________________根木棒。(只填结果)