题目内容
【题目】如图,DE⊥AB于E,DF⊥AC于F,若BD=CD、BE=CF.
(1)求证△BED≌△CFD.
(2)已知EC=6,AC=10,求BE.
(3)当∠C=45°时,判断△DFC的周长与线段AC长度的关系,并说明理由.
【答案】(1)见解析;(2)2;(3)△DFC的周长等于AC的长度,理由见解析.
【解析】
(1)由已知条件根据“HL”即可证得△BED≌△CFD;
(2)由已知易得AE=8,由(1)中所得△BED≌△CFD可得DE=DF,结合AD=AD,∠AED=∠AFD=90°可得△AED≌△AFD,由此可得AE=AF=AC-CF,再结合BE=CF即可得到AE=AC-BE,从而可得BE=AC-AE=10-8=2;
(3)当∠C=45°时,易得△AEC是等腰直角三角形,结合(2)中所得AE=AF可得CE=AE=AF,结合DF=DE即可得到△DCF的周长=DC+DF+FC=DC+DE+FC=CE+FC=AF+FC=AC.
(1)∵DE⊥AB,DF⊥AC,
∴∠E=∠DFC=90°.
∵在Rt△BED和Rt△CFD中,BE=CF,BD=CD,
∴Rt△BED≌ Rt△CFD(HL);
(2)∵DE⊥AE,EC=6,AC=10,
∴在Rt△AEC中,AE=,
由(1)中所得Rt△BED≌ Rt△CFD可得DE=DF,
∵在△AED和△AFD中,DE=DF,AD=AD,∠E=∠AFD=90°,
∴Rt△AED≌Rt△AFD(HL),
∴AE=AF ,
又∵AF=AC-CF,
∴AE=AC-CF ,
又∵BE=CF ,
∴AE=AC-B E ,即8=10-BE ,
∴BE=2 ;
(3)△DFC的周长等于AC的长度,理由如下:
∵∠C=45°,∠E=90°,
∴△AEC为等腰直角三角形,
∴AE=EC,
∵由(2)可知AE=AF,
∴AF=EC,
又∵DE=DF,
∴△DFC的周长=CD+DF+FC=CD+DE+FC=CE+FC=AF+FC=AC.