题目内容
【题目】已知点, 在数轴上对应的实数分别是, ,其中, 满足.
()求线段的长.
()点在数轴上对应的数为,且是方程的解,在数轴上是否存在点,使?若存在,求出点对应的数;若不存在,说明理由.
()在()和()的条件下,点, , 同时开始在数轴上运动,若点以每秒个单位长度是速度向左运动,点和点分别以每秒个单位长度和个单位长度的速度向右运动,点与点之间距离表示为,点与点之间的距离表示为.设运动时间为秒,试探究,随着时间的变化, 与满足怎样的数量关系?请写出相应的等式.
【答案】();( )为或;()见解析.
【解析】试题分析:(1)根据绝对值及完全平方的非负性,可得出a、b的值,继而可得出线段AB的长;
(2)先求出x的值,再由PA+PB=PC,可得出点P对应的数;
(3)根据A,B,C的运动情况确定AB,BC的变化情况,再根据t的取值范围即可求出AB与BC满足的数量关系.
试题解析:解:(1)∵|a﹣2|+(b+1)2=0,∴a=2,b=﹣1,∴线段AB的长为:2﹣(﹣1)=3;
(2)解方程x﹣1=x+1,得x=3,则点C在数轴上对应的数为3.
由图知,满足PA+PB=PC时,点P不可能在C点右侧,不可能在线段AC上,①如果点P在点B左侧时,2﹣x+(﹣1)﹣x=3﹣x,解得:x=﹣2;
③当P在A、B之间时,3﹣x=3,解得:x=0.
故所求点P对应的数为﹣2或0;
(3)t秒钟后,A点位置为:2﹣t,B点的位置为:﹣1+4t,C点的位置为:3+9t,BC=3+9t﹣(﹣1+4t)=4+5t,AB=|﹣1+4t﹣2+t|=|5t﹣3|,当t≤时,AB+BC=3﹣5t+4+5t=7;
当t>时,BC﹣AB=4+5t﹣(5t﹣3)=7.
所以当t≤时,AB+BC=7;当t>时,BC﹣AB=7.
【题目】某校2015年八年级为了解学生课堂发言情况,随机抽取该年级部分学生,对他们某天在课堂上发言的次数进行了统计,其结果如下表,并绘制了如图所示的两幅不完整的统计图,已知B、E两组发言人数的比为5:2,请结合图中相关数据回答下列问题:
发言次数n | 人数 | 百分比 | |
A | 0≤n<3 | ||
B | 3≤n<6 | ||
C | 6≤n<9 | ||
D | 9≤n<12 | ||
E | 12≤n<15 | ||
F | 15≤n<18 |
(1)求出样本容量,并补全直方图;
(2)该年级共有学生500人,请估计全年级在这天里发言次数不少于12次的人数;
(3)已知A组发言的学生中恰有1位女生,E组发言的学生中有2位男生.现从A组与E组中分别抽一位学生写报告,请用列表法或画树状图的方法,求所抽的两位学生恰好是一男一女的概率.