题目内容

如图,菱形的两条对角线分别为6和8,M、N分别是边AB、BC的中点,点P为AC上的一动点,则PM+PN的最小值是(  )
分析:要求PM+PN的最小值,PM,PN不能直接求,可考虑通过作辅助线转化PN,PM的值,从而找出其最小值求解.
解答:解:如图:
作ME⊥AC交AD于E,连接EN,
则EN就是PM+PN的最小值,
∵M、N分别是AB、BC的中点,
∴BN=BM=AM,
∵ME⊥AC交AD于E,
∴AE=AM,
∴AE=BN,AE∥BN,
∴四边形ABNE是平行四边形,
∴EN=AB,
∵菱形的两条对角线分别为6和8,
∴AB=
(
1
2
×6)
2
+(
1
2
×8)
2
=5,
∴PM+PN的最小值为5,
故选B.
点评:本题考了查菱形的性质和轴对称及平行四边形的判定等知识的综合应用.综合运用这些知识是解决本题的关键.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网