题目内容
【题目】二次函数y=ax2+bx+c(a、b、c为常数,且a≠0)中的x与y的部分对应值如下表:
x | ﹣1 | 0 | 1 | 3 |
y | ﹣1 | 3 | 5 | 3 |
当ax2+(b﹣1)x+c>0时,x的取值范围是_____.
【答案】﹣1<x<3.
【解析】
通过表中对应值得到抛物线与直线y=x的交点坐标为(﹣1,﹣1),(3,3),然后利用x=0,y=ax2+bx+c=3可判断在当﹣1<x<3之间抛物线在直线y=x的上方,从而得到ax2+bx+c>x的解集.
由表中数据得到抛物线与直线y=x的交点坐标为(﹣1,﹣1),(3,3),
所以当﹣1<x<3时,ax2+bx+c>x,即ax2+(b﹣1)x+c>0.
故答案为﹣1<x<3.
练习册系列答案
相关题目
【题目】(2016广东省茂名市第23题)某书店为了迎接“读书节”制定了活动计划,以下是活动计划书的部分信息:
“读书节”活动计划书 | ||
书本类别 | A类 | B类 |
进价(单位:元) | 18 | 12 |
备注 | 1、用不超过16800元购进A、B两类图书共1000本; 2、A类图书不少于600本; … |
(1)陈经理查看计划数时发现:A类图书的标价是B类图书标价的1.5倍,若顾客用540元购买的图书,能单独购买A类图书的数量恰好比单独购买B类图书的数量少10本,请求出A、B两类图书的标价;
(2)经市场调查后,陈经理发现他们高估了“读书节”对图书销售的影响,便调整了销售方案,A类图书每本标价降低a元(0<a<5)销售,B类图书价格不变,那么书店应如何进货才能获得最大利润?