题目内容
某种冰箱经两次降价后从原来的每台2500元降为每台1600元,求平均每次降价的百分率为__.
一袋中装有形状大小都相同的四个小球,每个小球上各标有一个数字,分别是1,4,7,8.现规定从袋中任取一个小球,对应的数字作为一个两位数的个位数;然后将小球放回袋中并搅拌均匀,再任取一个小球,对应的数字作为这个两位数的十位数.
(1)写出按上述规定得到所有可能的两位数;
(2)从这些两位数中任取一个,求其算术平方根大于4且小于7的概率.
一天,老师在黑板上布置了这样一道题目:如果2ya-b-3y2a+b+8=0是关于y的一元二次方程,你能试着求出a,b的值吗?
下面是小明和小敏两位同学的解法:
小明:根据题意得解方程组得小敏:根据题意得或解方程组得或
你认为上述两位同学的解法是否正确?为什么?若都不正确,你能给出正确的解答吗?
某商店如果将进货价为8元的商品按每件10元售出,每天可销售200件,现在采用提高售价,减少进货量的方法增加利润,已知这种商品每涨价0.5元,其销量就减少10件.
(1)要使每天获得利润700元,请你帮忙确定售价;
(2)问售价定在多少时能使每天获得的利润最多?并求出最大利润.
若代数式x2﹣6x+b可化为(x﹣a)2﹣3,则b﹣a=__.
关于x的一元二次方程(m﹣1)x2﹣x+m2﹣1=0的一个解是0,则m的值为( )
A. 0 B. ±1 C. 1 D. -1
(阅读理解)
点A、B、C为数轴上三点,如果点C在A、B之间且到A的距离是点C到B的距离3倍,那么我们就称点C是{ A,B }的奇点.
例如,如图1,点A表示的数为﹣3,点B表示的数为1.表示0的点C到点A的距离是3,到点B的距离是1,那么点C是{ A,B }的奇点;又如,表示﹣2的点D到点A的距离是1,到点B的距离是3,那么点D就不是{A,B }的奇点,但点D是{B,A}的奇点.
(知识运用)
如图2,M、N为数轴上两点,点M所表示的数为﹣3,点N所表示的数为5.
(1)数 所表示的点是{ M,N}的奇点;数 所表示的点是{N,M}的奇点;
(2)如图3,A、B为数轴上两点,点A所表示的数为﹣50,点B所表示的数为30.现有一动点P从点B出发向左运动,到达点A停止.P点运动到数轴上的什么位置时,P、A和B中恰有一个点为其余两点的奇点?
绝对值小于3的整数是 .
在实数﹣2,0,,3中,无理数是( )
A. ﹣2 B. 0 C. D. 3