题目内容
【题目】如图,在正方形ABCD中,动点P在射线CB上(与B、C不重合),连结AP,过D作DF∥AP交直线BC于点F,过F作FE⊥直线BD于点E,连结AE、PE.
(1)如图,当点P在线段CB上时
①求证:△ABP≌△DCF;
②点P在运动过程中,探究:△AEP的形状是否发生变化,若不变,请判断△AEP的形状,并说明理由;
(2)如图,当点P在CB的延长线上时,若正方形ABCD的边长为1,设BP=x,当x为何值时,DF平分∠BDC?
【答案】(1)①证明见解析;②△AEP的形状不发生变化,△AEP是等腰直角三角形,理由见解析;(2)当x=﹣1时,DF平分∠BDC.
【解析】
(1)①根据AAS即可证明△ABP≌△DCF;②连结CE,先证△ABE≌△CBE,证得EB=EF,∠EBF=∠EFB=45°,再证得△EBP≌△EFC,得出AE=EP∠AEB+∠BEP=∠BEC+∠CEF=90°,即可得出△AEP是等腰直角三角形;(2)若DF平分∠BDC,
则EF=CF,故CF=BP=x,BF=1﹣x,由△BEF是等腰直角三角形得BF=EF,即1﹣x=x,解得x=﹣1,则可求解.
(1)①证明:∵四边形ABCD是正方形, ∴AB=DC,∠ABC=∠DCF=90°,
∵DF∥AP, ∴∠APB=∠DFC,
在△ABP和△DCF中,
,
∴△ABP≌△DCF;
②△AEP的形状不发生变化,△AEP是等腰直角三角形,
理由:连结CE,
在△ABE和△CBE中,
,
∴△ABE≌△CBE,
∴AE=CE,∠AEB=∠CEB,
∵FE⊥BD,∠EBF=45°,
∴EB=EF,∠EBF=∠EFB=45°
∵△ABP≌△DCF,
∴BP=FC,
∴△EBP≌△EFC,
∴EP=EC,∠BEP=∠FEC,
∴AE=EP,
∠AEB+∠BEP=∠BEC+∠CEF=90°,
∴△AEP是等腰直角三角形;
(2)若DF平分∠BDC,
则EF=CF,
∵CF=BP=x,
∴BF=1﹣x,
∵△BEF是等腰直角三角形
∴BF=EF,
∴1﹣x=x,
解得x=﹣1,
∴当x=﹣1时,DF平分∠BDC.