题目内容
【题目】如图,抛物线与直线交于、两点,过作轴交抛物线于点,直线交轴于点.
求、、三点的坐标;
若点是线段上的一个动点,过作轴交抛物线于点,连接、,当时,求的值;
如图,连接,及,设点是的中点,点是线段上任意一点,将沿边翻折得到,求当为何值时,与重叠部分的面积是面积的.
【答案】(1)点坐标,点坐标,点坐标;(2);(3)当或时,与重叠部分的面积是面积的.
【解析】
(1)列方程组可知A、B两点坐标,根据点C的纵坐标与点A的纵坐标相同,列方程可求得点C坐标.
(2)如图1中,设,,则,根据 列出方程求出点H的横坐标,根据三角形的面积公式计算即可解决问题.
(3)分两种情形①若翻折后,点G在直线OC下方时,连接CG.如图2,可证四边形PFCG是平行四边形,得,在Rt△PBO中,根据,即可解决问题.②若翻折后,点G在直线OC上方时,连接CG.如图3,可证四边形PFGC是平行四边形,得即可解决问题.
解:由解得或,
∴点坐标,点坐标,
∵轴,
∴点纵坐标为,
由,解得或,
∴点坐标.
如图中,设,,则,
由题意,
解得或(舍弃),
∴.
∵,,
∴,,,
∵,
∴.
①若翻折后,点在直线下方时,连接.如图,
∵,
∴,
∴.,
∴四边形是平行四边形,
∴,
在中,,
∴.
②若翻折后,点在直线上方时,连接.如图,
∵,
∴,
∴.,
∴四边形是平行四边形,
∴,
综上所述:当或时,与重叠部分的面积是面积的.
练习册系列答案
相关题目