题目内容

【题目】已知关于x的一元二次方程x22k+1x+4k﹣3=0

1)求证无论k取什么实数值该方程总有两个不相等的实数根

2)当RtABC的斜边长a且两条直角边的长bc恰好是这个方程的两个根时ABC的周长

【答案】(1)答案见解析;(2)

【解析】试题分析:(1)根据方程的系数结合根的判别式,可得出△=2k-32+40,由此可证出:无论k取什么实数值,该方程总有两个不相等的实数根;

2)根据根与系数的关系结合勾股定理,即可得出关于k的一元二次方程,解之即可得出k值,进而可得出原方程,再根据根与系数的关系,即可求出△ABC的周长.

试题解析:解:1△=[﹣2k+1]2﹣44k﹣3=4k2﹣12k+13=2k﹣32+4

2k﹣32≥02k﹣32+40,即0无论k取什么实数值,该方程总有两个不相等的实数根;

2bc是方程x22k+1x+4k﹣3=0的两个根,b+c=2k+1bc=4k﹣3

a2=b2+c2a=k2k6=0k1=3k2=2

bc均为正数,4k30k=3,此时原方程为x27x+9=0b+c=7∴△ABC的周长为7+

练习册系列答案
相关题目

【题目】如图,在RtABC中,∠C=90°,以AC为直径作⊙O,交ABD,过点OOEAB,交BCE.

(1)求证:ED为⊙O的切线;

(2)如果⊙O的半径为,ED=2,延长EO交⊙OF,连接DF、AF,求ADF的面积.

【答案】(1)证明见解析;(2)

【解析】试题分析:(1)首先连接OD,由OEAB,根据平行线与等腰三角形的性质,易证得 即可得,则可证得的切线;
(2)连接CD,根据直径所对的圆周角是直角,即可得 利用勾股定理即可求得的长,又由OEAB,证得根据相似三角形的对应边成比例,即可求得的长,然后利用三角函数的知识,求得的长,然后利用SADF=S梯形ABEF-S梯形DBEF求得答案.

试题解析:(1)证明:连接OD

OEAB

∴∠COE=CADEOD=ODA

OA=OD,

∴∠OAD=ODA

∴∠COE=DOE

在△COE和△DOE中,

∴△COE≌△DOE(SAS),

EDOD

ED的切线;

(2)连接CD,交OEM

RtODE中,

OD=32,DE=2,

OEAB

∴△COE∽△CAB

AB=5,

AC是直径,

EFAB

SADF=S梯形ABEFS梯形DBEF

∴△ADF的面积为

型】解答
束】
25

【题目】【题目】已知,抛物线y=ax2+ax+b(a≠0)与直线y=2x+m有一个公共点M(1,0),且a<b.

(1)求ba的关系式和抛物线的顶点D坐标(用a的代数式表示);

(2)直线与抛物线的另外一个交点记为N,求DMN的面积与a的关系式;

(3)a=﹣1时,直线y=﹣2x与抛物线在第二象限交于点G,点G、H关于原点对称,现将线段GH沿y轴向上平移t个单位(t>0),若线段GH与抛物线有两个不同的公共点,试求t的取值范围.

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网