题目内容
【题目】如图,∠AOB=60°,C是BO延长线上一点,OC=12cm,动点P从点C出发沿CB以2cm/s的速度移动,动点Q从点O出发沿OA以1cm/s的速度移动,如果点P、Q同时出发,用t(s)表示移动的时间,当t=_____s时,△POQ是等腰三角形.
【答案】或10
【解析】
根据等腰三角形的判定,分两种情况:(1)当点P在线段OC上时;(2)当点P在CO的延长线上时.分别列式计算即可求.
解:分两种情况:(1)当点P在线段OC上时,
设t时后△POQ是等腰三角形,
有OP=OC﹣CP=OQ,
即10﹣2x=x,
解得,x=s;
(2)当点P在CO的延长线上时,此时经过CO时的时间已用5s,
当△POQ是等腰三角形时,∵∠POQ=60°,
∴△POQ是等边三角形,
∴OP=OQ,
即2(x﹣5)=x,
解得,x=10s
故答案为s或10s.
练习册系列答案
相关题目
【题目】在一个不透明的袋子中装有仅颜色不同的20个小球,其中红球6个,黑球14个
(1)先从袋子中取出x(x>3)个红球后,再从袋子中随机摸出1个球,将“摸出黑球”,记为事件A.请完成下列表格.
事件A | 必然事件 | 随机事件 |
x的值 |
(2)先从袋子中取出m个红球,再放入2m个一样的黑球并摇匀,随机摸出1个球是黑球的概率是,求m的值.