题目内容
【题目】某数学兴趣小组对线段上的动点问题进行探究,已知AB=8.
问题思考:
如图1,点P为线段AB上的一个动点,分别以AP、BP为边在同侧作正方形APDC与正方形PBFE.
(1)在点P运动时,这两个正方形面积之和是定值吗?如果时求出;若不是,求出这两个正方形面积之和的最小值.
(2)分别连接AD、DF、AF,AF交DP于点A,当点P运动时,在△APK、△ADK、△DFK中,是否存在两个面积始终相等的三角形?请说明理由.
问题拓展:
(3)如图2,以AB为边作正方形ABCD,动点P、Q在正方形ABCD的边上运动,且PQ=8.若点P从点A出发,沿A→B→C→D的线路,向D点运动,求点P从A到D的运动过程中,PQ的中点O所经过的路径的长.
(4)如图(3),在“问题思考”中,若点M、N是线段AB上的两点,且AM=BM=1,点G、H分别是边CD、EF的中点.请直接写出点P从M到N的运动过程中,GH的中点O所经过的路径的长及OM+OB的最小值.
【答案】(1)当x=4时,这两个正方形面积之和有最小值,最小值为32;
(2)存在两个面积始终相等的三角形,图形见解析;
(3)PQ的中点O所经过的路径的长为6π;
(4)点O所经过的路径长为3,OM+OB的最小值为.
【解析】
(1)设AP=x,则PB=1-x,根据正方形的面积公式得到这两个正方形面积之和=x2+(8-x)2,配方得到2(x-4)2+32,然后根据二次函数的最值问题求解;
(2)根据PE∥BF求得PK=,进而求得DK=PD-PK=a-=,然后根据面积公式即可求得;
(3)PQ的中点O所经过的路径是三段半径为4,圆心角为90°的圆弧;
(4)GH中点O的运动路径是与AB平行且距离为3的线段XY上,然后利用轴对称的性质,求出OM+OB的最小值.
(1)当点P运动时,这两个正方形的面积之和不是定值.
设AP=x,则PB=8-x,
根据题意得这两个正方形面积之和=x2+(8-x)2=2x2-16x+64=2(x-4)2+32,
所以当x=4时,这两个正方形面积之和有最小值,最小值为32;
(2)存在两个面积始终相等的三角形,它们是△APK与△DFK.
依题意画出图形,如图所示.
设AP=a,则PB=BF=8-a.
∵PE∥BF,
∴,
即,
∴PK=,
∴DK="PD-PK=" a-=,
∴S△APK=PKPA=a=,S△DFK=DKEF=(8-a)=,
∴S△APK=S△DFK;
(3)当点P从点A出发,沿A→B→C→D的线路,向点D运动时,不妨设点Q在DA边上,
若点P在点A,点Q在点D,此时PQ的中点O即为DA边的中点;
若点Q在DA边上,且不在点D,则点P在AB上,且不在点A.
此时在Rt△APQ中,O为PQ的中点,所以AO=PQ=4.
所以点O在以A为圆心,半径为4,圆心角为90°的圆弧上.
PQ的中点O所经过的路径是三段半径为4,圆心角为90°的圆弧,如图所示:
所以PQ的中点O所经过的路径的长为:×2π×4=6π;
(4)点O所经过的路径长为3,OM+OB的最小值为.
如图,分别过点G、O、H作AB的垂线,垂足分别为点R、S、T,则四边形GRTH为梯形.
∵点O为中点,
∴OS=(GR+HT)=(AP+PB)=4,即OS为定值.
∴点O的运动路径在与AB距离为4的平行线上.
∵MN=6,点P在线段MN上运动,且点O为GH中点,
∴点O的运动路径为线段XY,XY=MN=3,XY∥AB且平行线之间距离为4,点X与点A、点Y与点B之间的水平距离均为2.5.
如图,作点M关于直线XY的对称点M′,连接BM′,与XY交于点O.
由轴对称性质可知,此时OM+OB=BM′最小.
在Rt△BMM′中,由勾股定理得:BM′=.
∴OM+OB的最小值为.
【题目】为了帮助市内一名患“白血病”的中学生,东营市某学校数学社团15名同学积极捐款,捐款情况如下表所示,下列说法正确的是( )
捐款数额 | 10 | 20 | 30 | 50 | 100 |
人数 | 2 | 4 | 5 | 3 | 1 |
A. 众数是100 B. 中位数是30 C. 极差是20 D. 平均数是30
【题目】工厂甲、乙两个部门各有员工400人,为了解这两个部门员工的生产技能情况,进行了抽样调查,请将下列过程补充完整:
收集数据:
从甲、乙两个部门各随机抽取20名员工,进行了生产技能测试,测试成绩(百分制)如下:
整理、描述数据:
按如下分数段整理、描述这两组样本数据:
成绩 人数 部门 | 40≤x≤49 | 50≤x≤59 | 60≤x≤69 | 70≤x≤79 | 80≤x≤89 | 90≤x≤100 |
甲 | 0 | 0 | 1 | 11 | 7 | 1 |
乙 |
(说明:成绩80分及以上为生产技能优秀,70—79分为生产技能良好,60—69分为生产技能合格,60分以下为生产技能不合格)
分析数据:
两组样本数据的平均数、中位数、众数如下表所示:
部门 | 平均数 | 中位数 | 众数 |
甲 | 78.3 | 77.5 | |
乙 | 78 | 81 |
得出结论:
.估计乙部门生产技能优秀的员工人数约为 .
.可以推断出 部门员工的生产技能水平高.理由为 .
(至少从两个不同的角度说明推断的合理性)