题目内容
先观察下列等式,然后用你发现的规律解答下列问题.1 |
1×2 |
1 |
2 |
1 |
2 |
1 |
3 |
1 |
3×4 |
1 |
3 |
1 |
4 |
(1)计算
1 |
1×2 |
1 |
2×3 |
1 |
3×4 |
1 |
4×5 |
1 |
5×6 |
(2)探究
1 |
1×2 |
1 |
2×3 |
1 |
3×4 |
1 |
n(n+1) |
分析:由已知,
=1-
,
=
-
=
可得出,(1)原式等于1-
=
,(2)原式等于1-
=
.
1 |
1×2 |
1 |
2 |
1 |
2×3 |
1 |
2 |
1 |
3 |
1 |
6 |
1 |
6 |
5 |
6 |
1 |
n+1 |
n |
n+1 |
解答:解:(1)原式=1-
+
-
+
-
+
-
+
-
,
=1-
,
=
;
(2)原式=1-
+
-
+…-
+
,
=1-
,
=
.
1 |
2 |
1 |
2 |
1 |
3 |
1 |
3 |
1 |
4 |
1 |
4 |
1 |
5 |
1 |
5 |
1 |
6 |
=1-
1 |
6 |
=
5 |
6 |
(2)原式=1-
1 |
2 |
1 |
2 |
1 |
3 |
1 |
n |
1 |
n+1 |
=1-
1 |
n+1 |
=
n |
n+1 |
点评:此题主要考查了数字规律问题,关键是由已知发现
=
-
,值得同学们注意,题目比较典型.
1 |
n(n+1) |
1 |
n |
1 |
n+1 |
练习册系列答案
相关题目