题目内容

先观察下列等式,然后用你发现的规律解答下列问题.
1
1×2
=1-
1
2
1
2×3
=
1
2
-
1
3
1
3×4
=
1
3
-
1
4
,┅┅
(1)根据你发现的规律写出第5个等式:
 

(2)探究
1
1×2
+
1
2×3
+
1
3×4
+…+
1
n(n+1)
=
 
.(用含有n的式子表示)
(3)计算:
1
1×3
+
1
3×5
+
1
5×7
+
┅┅+
1
2007×2009
分析:(1)观察发现,每一个等式的左边都是一个分数,其中分子是1,分母是连续的两个正整数之积,并且如果是第n个等式,分母中的第一个因数就是n,第二个因数是n+1;等式的右边是两个分数的差,这两个分数的分子都是1,分母是连续的两个正整数,并且是第n个等式,被减数的分母就是n,减数的分母是n+1.然后把n=5代入即可得出第5个等式;
(2)先将(1)中发现的第n个等式的规律
1
n(n+1)
=
1
n
-
1
n+1
代入,再计算即可;
(3)先类比(1)的规律,得出
1
n(n+2)
=
1
2
1
n
-
1
n+1
),再计算即可.
解答:解:(1)
1
5×6
=
1
5
-
1
6

(2)
1
1×2
+
1
2×3
+
1
3×4
+…+
1
n(n+1)

=1-
1
2
+
1
2
-
1
3
+
1
3
-
1
4
+…+
1
n
-
1
n+1

=1-
1
n+1
=
n
n+1

(3)
1
1×3
+
1
3×5
+
1
5×7
+
┅┅+
1
2007×2009

=
1
2
(1-
1
3
+
1
3
-
1
5
+
1
5
-
1
7
+…+
1
2007
-
1
2009
)

=
1
2
×(1-
1
2009
)

=
1004
2009

故答案为:
1
5×6
=
1
5
-
1
6
. 
n
n+1
点评:本题考查了规律型:数字的变化,得出
1
n(n+1)
=
1
n
-
1
n+1
1
n(n+2)
=
1
2
1
n
-
1
n+1
),以及抵消法的运用是解题的关键.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网