题目内容
【题目】如图,四边形中,,平分交于,平分交于.
求证:
【答案】证明见解析.
【解析】
试题分析: 由四边形的内角和为360度求出∠ADC+∠ABC度数,由DF、BE分别为角平分线,利用角平分线定义及等量代换得到∠ABE+∠FDC为90度,再由直角三角形ADF两锐角互余及∠ADF=∠FDC,利用等量代换得到一对同位角相等,利用同位角相等两直线平行即可得证.
试题解析:
在四边形ABCD中
∠A+∠ABC+∠C+∠ADC=360°
又∵ ∠A=∠ C=90°
∴∠ABC+∠ ADC=180°
在Rt△AFD中,∠AFD+∠ADF=90°
又∵DF平分∠ADC
∴∠ADF=∠ADC
所以∠AFD=90°- ∠ADC=∠ABC
又∵BE平分∠ABC
∴∠ABE=∠ABC
∴∠AFD=∠ABE
∴BE//DF
练习册系列答案
相关题目