题目内容

【题目】如图,在矩形ABCD中,点E、F分别在边CD、BC上,且DC=3DE=6.将矩形沿直线EF折叠,使点C恰好落在AD边上的点P处,则FP=

【答案】4
【解析】解:∵DC=3DE=6,
∴DE=2,CE=4,
由翻折变换得,PE=CE,FP=FC,∠EPF=∠C=90°,∠CFE=∠PFE,
所以,在Rt△DPE中,∠DPE=30°,
所以,∠DPF=∠EPF+∠DPE=90°+30°=120°,
∵矩形对边AD∥BC,
∴∠CFP=180°﹣∠DPF=180°﹣120°=60°,
∴∠CFE= ∠CFP= ×60°=30°,
∴EF=2CE=2×4=8,
在Rt△CEF中,根据勾股定理得,FC= = =4
所以答案是:4
【考点精析】根据题目的已知条件,利用矩形的性质和翻折变换(折叠问题)的相关知识可以得到问题的答案,需要掌握矩形的四个角都是直角,矩形的对角线相等;折叠是一种对称变换,它属于轴对称,对称轴是对应点的连线的垂直平分线,折叠前后图形的形状和大小不变,位置变化,对应边和角相等.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网