题目内容

【题目】在线段AB的同侧作射线AM和BN,若∠MAB与∠NBA的平分线分别交射线BN,AM于点E,F,AE和BF交于点P.如图,点点同学发现当射线AM,BN交于点C;且∠ACB=60°时,有以下两个结论:
①∠APB=120°;②AF+BE=AB.
那么,当AM∥BN时:

(1)点点发现的结论还成立吗?若成立,请给予证明;若不成立,请求出∠APB的度数,写出AF,BE,AB长度之间的等量关系,并给予证明;
(2)设点Q为线段AE上一点,QB=5,若AF+BE=16,四边形ABEF的面积为32 ,求AQ的长.

【答案】
(1)

解:解:点点的结论:①∵∠ACB=60°,

∴∠BAC+∠ABC=120°,

∵∠MAB与∠NBA的平分线分别交射线BN,AM于点E,F,

∴∠PAB+∠PBA= (∠PAB+∠PBA)=60°,

∴∠APB=120°,

②如图,在AB上取一点G,使AG=AF,

∵AE是∠BAM的角平分线,

∴∠PAG=∠PAF,

在△PAG和△PAF中,

∴△PAG≌△PAF(SAS),

∴∠AFP=∠AGP,

∵∠EPF=∠APB=120°,∠ACB=60°,

∴∠EPF+∠ACB=180°,

∴∠PFC+∠PEC=180°,

∵∠PFC+∠AFP=180°,

∴∠PEC=∠AFP,

∴∠PEC=∠AGP,

∵∠AGP+∠BGP=180°,

∴∠PEC+∠BGP=180°,

∵∠PEC+∠PEB=180°,

∴∠BGP=∠BEP,

∵BF是∠ABC的角平分线,

∴∠PBG=∠PBE,

在△BPG和△BPE中,

∴△BPG≌△BPE(AAS),

∴BG=BE,

∴AF+BE=AB.

原命题不成立,新结论为:∠APB=90°,AF+BE=2AB(或AF=BE=AB),

理由:∵AM∥BN,

∴∠MAB+∠NBA=180°,

∵AE,BF分别平分∠MAB,NBA,

∴∠EAB= ∠MAB,∠FBA= ∠NBA,

∴∠EAB+∠FBA= (∠MAB+∠NBA)=90°,

∴∠APB=90°,

∵AE平分∠MAB,

∴∠MAE=∠BAE,

∵AM∥BN,

∴∠MAE=∠BAE,

∴∠BAE=∠BEA,

∴AB=BE,

同理:AF=AB,

∴AF+BE=2AB(或AF=BE=AB)


(2)

解:如图1,

过点F作FG⊥AB于G,

∵AF=BE,AF∥BE,

∴四边形ABEF是平行四边形,

∵AF+BE=16,

∴AB=AF=BE=8,

∵32 =8×FG,

∴FG=4

在Rt△FAG中,AF=8,

∴∠FAG=60°,

当点G在线段AB上时,∠FAB=60°,

当点G在线段BA延长线时,∠FAB=120°,

①如图2,

当∠FAB=60°时,∠PAB=30°,

∴PB=4,PA=4

∵BQ=5,∠BPA=90°,

∴PQ=3,

∴AQ=4 ﹣3或AQ=4 +3.

②如图3,

当∠FAB=120°时,∠PAB=60°,∠FBG=30°,

∴PB=4

∵PB=4 >5,

∴线段AE上不存在符合条件的点Q,

∴当∠FAB=60°时,AQ=4 ﹣3或4 +3.


【解析】点点的两个结论:①利用三角形的角平分线和三角形的内角和即可得出结论;②先判断出△PAG≌△PAF(SAS)得出∠AFP=∠AGP,结合同角的补角相等即可得出∠BGP=∠BEP,进而判断出△BPG≌△BPE(AAS),即可得出结论;(1)由角平分线和平行线整体求出∠MAB+∠NBA,从而得到∠APB=90°,最后用等边对等角,即可.(2)先根据条件求出AF,FG,求出∠FAG=60°,最后分两种情况讨论计算.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网