题目内容
【题目】如图,在Rt△ABC中,∠C=90°,∠B=20°,以点A为圆心,任意长为半径画弧分别交AB,AC于点M,N,再分别以点M,N为圆心,大于MN的长为半径画弧,两弧相交于点P,连接AP并延长交BC于点D,则∠ADB=________.
【答案】125
【解析】
由于在Rt△ABC中,∠C=90°,∠B=20°,先根据三角形内角和可计算出∠CAB=70,再根据角平分线的定义可得∠CAD=∠BAD=35°,最后根据三角形内角和可计算出∠ADB=180°-20°-35°=125°.
由题意可得:AD平分∠CAB,
∵∠C=90°,∠B=20°,
∴∠CAB=70°,
∴∠CAD=∠BAD=35°,
∴∠ADB=180°-20°-35°=125°,
故答案为:125°.
练习册系列答案
相关题目
【题目】骑自相车旅行越来越受到人们的喜爱,顺风车行经营的A型车2016年4月份销售总额为3.2万元,今年经过改造升级后A型车每辆销售比去年增加400元,若今年4月份与去年4月份卖出的A型车数量相同,则今年4月份A型车销售总额将比去年4月份销售总额增加25%. A、B两种型号车的进货和销售价格如表:
A型车 | B型车 | |
进货价格(元/辆) | 1100 | 1400 |
销售价格(元/辆) | 今年的销售价格 | 2400 |
(1)求今年4月份A型车每辆销售价多少元(用列方程的方法解答);
(2)该车行计划5月份新进一批A型车和B型车共50辆,且B型车的进货数量不超过A型车数量的两倍,应如何进货才能使这批车获利最多?