题目内容
【题目】已知:如图,在菱形ABCD 中,点E,O,F 分别是边AB,AC,AD的中点,连接CE、CF、OF.
(1)求证:△ BCE≌△DCF;
(2)当AB与BC满足什么条件时,四边形AEOF正方形?请说明理由.
【答案】(1)证明见解析(2)四边形AEOF是正方形
【解析】
试题分析:(1)利用SAS证明△ BCE≌△DCF;
(2)先证明AEOF为菱形,当BC⊥AB,得∠BAD=90°,再利用知识点:有一个角是90°的菱形是正方形。
试题解析:(1)∵四边形ABCD为菱形
∴AB=BC=CD=DA,∠B=∠D
又E、F分别是AB、AD中点,∴BE=DF
∴△ABE≌△CDF(SAS)
(2)若AB⊥AD,则AEOF为正方形,理由如下
∵E、O分别是AB、AC中点,∴EO∥BC,
又BC∥AD,∴OE∥AD,即:OE∥AF
同理可证OF∥AE,所以四边形AEOF为平行四边形
由(1)可得AE=AF
所以平行四边AEOF为菱形
因为BC⊥AB,所以∠BAD=90°,所以菱形AEOF为正方形。
![](http://thumb.zyjl.cn/images/loading.gif)
练习册系列答案
相关题目