题目内容
【题目】二次函数y=ax2+bx+c图象的一部分如图所示.已知它的顶点M在第二象限,且经过点A(1,0)和点B(0,l).若此二次函数的图象与x轴的另一个交点为C.
(1)试求a,b所满足的关系式;
(2)当△AMC的面积为△ABC面积的倍时,求a的值;
(3)是否存在实数a,使得△ABC为直角三角形.若存在,请求出a的值;若不存在,请说明理由.
【答案】 (1)a+b=-1;(2)a=-4+;(3)不存在.
【解析】
(1)把点A(1,0)和点B(0,1)的坐标代入抛物线的解析式,就可以得到关于a,b,c关系式.整理就得到a,b的关系.
(2)利用公式求出抛物线的顶点的纵坐标,进而表示出△AMC的面积,根据就可以得到关于a的方程,解得a的值;
(3)本题应分A是直角顶点,B是直角顶点,C是直角顶点三种情况进行讨论.
(1)将A(1,0),B(0,l)代入y=ax2+bx+c得:
,可得:a+b=-1
(2)(2)∵a+b=1,
∴b=a1代入函数的解析式得到:y=ax2(a+1)x+1,
顶点M的纵坐标为 ,
因为
由同底可知:=
整理得:a2+8a+1=0,得:a=-4±
由图象可知:a<0,因为抛物线过点(0,1),顶点M在第二象限,其对称轴x=,
∴-1<a<0,
∴a=-4-舍去,从而a=-4+
(3)① 由图可知,A为直角顶点不可能;
② 若C为直角顶点,此时与原点O重合,不合题意;
③ 若设B为直角顶点,则可知,得:
令,可得:,,
得:,
∴
解得:a=-1,由-1<a<0,不合题意.所以不存在
综上所述:不存在.
【题目】某商贸公司有、两种型号的商品需运出,这两种商品的体积和质量分别如下表所示:
体积(立方米/件) | 质量(吨/件) | |
型商品 | 0.8 | 0.5 |
型商品 | 2 | 1 |
(1)已知一批商品有、两种型号,体积一共是20立方米,质量一共是10.5吨,求、两种型号商品各有几件?
(2)物资公司现有可供使用的货车每辆额定载重3.5吨,容积为6立方米,其收费方式有以下两种:
①按车收费:每辆车运输货物到目的地收费600元;
②按吨收费:每吨货物运输到目的地收费200元.
现要将(1)中商品一次或分批运输到目的地,如果两种收费方式可混合使用,商贸公司应如何选择运送、付费方式,使其所花运费最少,最少运费是多少元?