题目内容
【题目】如图,已知△BAD和△BCE均为等腰直角三角形,∠BAD=∠BCE=90°,点M为DE的中点,过点E与AD平行的直线交射线AM于点N.
(1)当A,B,C三点在同一直线上时(如图1),直接写出线段AD与NE的数量关系为 .
(2)将图1中的△BCE绕点B旋转,当A,B,E三点在同一直线上时(如图2),判断△ACN是什么特殊三角形并说明理由.
(3)将图1中△BCE绕点B旋转到图3位置,此时A,B,M三点在同一直线上.若AC=3,AD=1,则四边形ACEN的面积为 .
【答案】(1)AD=AE;(2)△ACN为等腰直角三角形,理由见解析;(3) .
【解析】试题分析:(1)证明△ADM和△NEM全等,可得AD=NE.(2)△BAD和△BCE均为等腰直角三角形,证明△ABC和△NEC中,可得∠ABC=∠NEC,△ACN为等腰直角三角形.(3)连接CM,先证明△ADM≌△NEM,△ABC≌△NEC,所以 △ACN为等腰直角三角形,
由(1)可知,△AMD≌△NME,利用S四边形ACNE=S△AMC+S直角梯形MNEC.
试题解析:
解:(1)结论:AD=NE,
理由:如图1,
∵EN∥AD,
∴∠MAD=∠MNE,∠ADM=∠NEM,
∵点M为DE的中点,
∴DM=EM,
在△ADM和△NEM中,
,
∴△ADM≌△NEM,
∴AD=NE.
(2)结论:△ACN为等腰直角三角形.
理由,如图2,
∵△BAD和△BCE均为等腰直角三角形,
∴AB=AD,CB=CE,∠CBE=∠CEB=45°,
∵AD∥NE,
∴∠DAE+∠NEA=180°,
∵∠DAE=90°,
∴∠NEA=90°.
∴∠NEC=135°,
∵A,B,E三点在同一直线上,
∴∠ABC=180°﹣∠CBE=135°,
∴∠ABC=∠NEC,
∵△ADM≌△NEM(已证),
∴AD=NE,
∵AD=AB,
∴AB=NE,
在△ABC和△NEC中,
,
∴△ABC≌△NEC,
∴AC=NC,∠ACB=∠NCE,
∴∠ACN=∠BCE=90°,
∴△ACN为等腰直角三角形.
(3)如图3中,连接CM.
∵AD∥NE,M为中点,
∴易得△ADM≌△NEM,
∴AD=NE.
∵AD=AB,
∴AB=NE,
∵AD∥NE,
∴AF⊥NE,
在四边形BCEF中,
∵∠BCE=∠BFE=90°,
∴∠FBC+∠FEC=360°﹣180°=180°
∵∠FBC+∠ABC=180°,
∴∠ABC=∠FEC,
在△ABC和△NEC中,
,
∴△ABC≌△NEC,
∴AC=NC,∠ACB=∠NCE,
∴∠ACN=∠BCE=90°,
∴△ACN为等腰直角三角形,
由(1)可知,△AMD≌△NME,
∴AM=MN,AD=NE=1,
∴CM⊥AN,AM=CM=MN,
∵AC=3,
∴AM=CM=MN=3,
∴S四边形ACNE=S△AMC+S直角梯形MNEC=×3×3+×(3+1)×3=.
故答案为.