题目内容
【题目】如图所示,在△ABC中,∠BAC=90°,AD⊥BC于D,BF平分∠ABC,交AD于E,若AE=13,求AF的长度.
【答案】AF=13
【解析】
试题分析:由∠BAC=90°,于是得到∠ABF+∠AFB=90°,根据垂直的定义得到∠ADB=90°,于是得到∠EBD+∠BED=90°,根据角平分线的定义得到∠ABF=∠EBD,等量代换得到∠AFB=∠BED,∠AEF=∠AFB,根据等腰三角形的判定定理即可得到结论.
解:∵∠BAC=90°,
∴∠ABF+∠AFB=90°,
又∵AD⊥BC,
∴∠ADB=90°,
∴∠EBD+∠BED=90°,
又∵BF平分∠ABC,
∴∠ABF=∠EBD,
∴∠AFB=∠BED,
又∵∠AEF=∠BED,
∴∠AEF=∠AFB,
∴AE=AF,
∵AE=13,
∴AF=13.
练习册系列答案
相关题目
【题目】某酒店有三人间、双人间客房若干,各种房型每天的收费标准如下:
普通(元/间) | 豪华(元/间) | |
三人间 | 160 | 400 |
双人间 | 140 | 300 |
一个50人的旅游团到该酒店入住,选择了一些三人普通间和双人豪华间入住,且恰好住满.已知该旅游团当日住宿费用共计4020元,问该旅游团入住的三人普通间和双人豪华间各为几间?