题目内容
【题目】如图,在等腰三角形△ABC中,O为底边BC的中点,以O为圆心作半圆与AB,AC相切,切点分别为D,E.过半圆上一点F作半圆的切线,分别交AB,AC于M,N.那么的值等于( )
A.B.
C.
D.1
【答案】B
【解析】
连OM,ON,利用切线长定理知OM,ON分别平分∠BMN,∠CNM,再利用三角形和四边形的内角和可求得△OBM与△NOC还有一组角相等,由此得到它们相似,通过相似比可解决问题.
解:连OM,ON,如图
∵MD,MF与⊙O相切,
∴∠1=∠2,
同理得∠3=∠4,
而∠1+∠2+∠3+∠4+∠B+∠C=360°,AB=AC
∴∠2+∠3+∠B=180°;
而∠1+∠MOB+∠B=180°,
∴∠3=∠MOB,即有∠4=∠MOB,
∴△OMB∽△NOC,
∴,
,
.
故选:B.
![](http://thumb.zyjl.cn/images/loading.gif)
练习册系列答案
相关题目