题目内容
【题目】如图,在边长为1的正方形组成的网格中建立直角坐标系,△AOB的顶点均在格点上,点O为原点,点A、B的坐标分别是A(3,2)、B(1,3).
(1)将△AOB向下平移3个单位后得到△A1O1B1,则点B1的坐标为 ;
(2)将△AOB绕点O逆时针旋转90°后得到△A2OB2,请在图中作出△A2OB2,并求出这时点A2的坐标为 ;
(3)在(2)中的旋转过程中,线段OA扫过的图形的面积 .
【答案】(1)(1,0);(2)(﹣2,3);(3).
【解析】
试题分析:(1)根据平移的性质,上下平移在在对应点的坐标上,纵坐标上上加下减就可以求出结论;
(2)过点O作OA的垂线,在上面取一点A2使OA2=OA,同样的方法求出点B2,顺次连接A2、B2、O就得出△A2OB2,就可以相应的结论;
(3)根据条件就是求扇形A2OA的面积即可.
解:(1)由题意,得
B1(1,3﹣3),
∴B1(1,0).
故答案为:(1,0);
(2)如图,①,过点O作OA的垂线,在上面取一点A2使OA2=OA,
②,同样的方法求出点B2,顺次连接A2、B2、O就得出△A2OB2,
∴△A2OB2是所求作的图形.由作图得
A2(﹣2,3).
故答案为:(﹣2,3);
(3)由勾股定理,得
OA=,
∴线段OA扫过的图形的面积为:=.
故答案为:.
练习册系列答案
相关题目