题目内容
【题目】如图,在中,.点是中点,点为边上一点,连接,以为边在的左侧作等边三角形,连接.
(1)的形状为______;
(2)随着点位置的变化,的度数是否变化?并结合图说明你的理由;
(3)当点落在边上时,若,请直接写出的长.
【答案】(1)等边三角形;(2)的度数不变,理由见解析;(3)2
【解析】
(1)由、,可得出、,结合点是中点,可得出,进而即可得出为等边三角形;
(2)由(1)可得出,根据可得出,再结合、即可得出,根据全等三角形的性质即可得出,即的度数不变;
(3)易证为等腰三角形,由等腰三角形及等边三角形的性质可得出,进而可得出.
解:(1)∵在中,,,
∴,.
∵点是中点,
∴,
∴为等边三角形.
故答案为:等边三角形.
(2)的度数不变,理由如下:
∵,点是中点,
∴,
∴.
∵为等边三角形,
∴.
又∵为等边三角形,
∴,
∴,
∴.
在和中,
,
∴,
∴,
即的度数不变.
(3)∵为等边三角形,
∴.
∵,
∴,
∴为等腰三角形,
∴,
∴.
练习册系列答案
相关题目