题目内容

如图,已知直角坐标系内有一条直线和一条曲线,这条直线和x轴、y轴分别交于点A和点B,且OA=OB=1.这条曲线是函数y=
1
2x
的图象在第一象限的一个分支,点P是这条曲线上任意一点,它的坐标是(a、b),由点P向x轴、y轴作垂线PM、PN,垂足是M、N,直线AB分别交PM、PN于点E、F.
(1)点E坐标是
(a,1-a)
(a,1-a)
,点F坐标是
(1-b,b)
(1-b,b)
(用含a的代数式表示点E的坐标,用含b的代数式表示点F的坐标)
(2)求△OEF的面积(结果用含a、b的代数式表示);
(3)△AOF与△BOE是否相似?若相似,请证明;若不相似,请简要说明理由.
(4)当点P在曲线y=
1
2x
上移动时,△OEF随之变动,指出在△OEF的三个内角中,大小始终保持不变的那个角,并求出此角的大小,同时证明你的结论.
分析:(1)由PM与x轴垂直,E在PM上,得到E的横坐标与P相同,同理F的纵坐标与P相同,求出直线AB的解析式,将E的横坐标及F的纵坐标分别代入,即可确定出E与F的坐标;
(2)三角形EOF的面积=三角形AOB的面积-三角形BOF的面积-三角形AOE的面积,表示即可;
(3)根据题意易知∠A=∠B,要证△AOF与△BOE相似,只证夹边对应成比例即可;
(4)应用三角形内角和定理及内外角关系可求∠EOF=45°是一定值,即解.
解答:解:(1)根据题意,易知:直线AB的解析式为y=-x+1,
点E的坐标是(a,1-a),点F的坐标是(1-b,b);
故答案为:(a,1-a);(1-b,b);

(2)∵OA=OB=1,NF=1-b,EM=1-a,
∴S△EOF=S△AOB-S△AOE-S△BOF
=
1
2
×1×1-
1
2
×1×(1-a)-
1
2
×1×(1-b)=
a+b-1
2


(3)△AOF和△BEO一定相似,理由为:
证明:∵OA=OB=1,
∴∠OAF=∠EBO,
∴BE=BA-AE=
2
-
(1-a)2+(1-a)2
=
2
a,
AF=BA-BF=
2
-
(1-b)2+(1-b)2
=
2
b,
∵点P是函数y=
1
2x
图象上任意一点,
∴b=-
1
2a
,即2ab=1,
2
a•
2
b=1,
又∵OB•OA=1,
∴AF•BE=OB•OA,即
AF
OB
=
OA
BE

∴△AOF∽△BEO;

(4)当点P在曲线上移动时,在△OEF中,∠EOF一定等于45°,
由(3)知,△AOF∽△BEO,
∴∠AFO=∠BOE,
在△BOF中,∠AFO=∠BOF+∠B,而∠BOE=∠BOF+∠EOF,
∴∠EOF=∠B=45°.
点评:此题属于反比例函数综合题,涉及的知识有:坐标与图形性质,相似三角形的判定与性质,勾股定理,外角性质,以及反比例函数的性质,熟练掌握性质及定理是解本题的关键.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网