题目内容
【题目】已知:在⊙O中,AB是直径,AC是弦,OE⊥AC于点E,过点C作直线FC,使∠FCA=∠AOE,交AB的延长线于点D.
(1)求证:FD是⊙O的切线;
(2)设OC与BE相交于点G,若OG=2,求⊙O半径的长;
(3)在(2)的条件下,当OE=3时,求图中阴影部分的面积.
【答案】(1)证明见解析(2)6;(3)
【解析】
试题分析:(1)要证FD是⊙O的切线只要证明∠OCF=90°即可;
(2)根据已知证得△OEG∽△CBG根据相似比不难求得OC的长;
(3)根据S阴影=S△OCD﹣S扇形OBC从而求得阴影的面积.
证明:(1)连接OC(如图①),
∵OA=OC,
∴∠1=∠A.
∵OE⊥AC,
∴∠A+∠AOE=90°.
∴∠1+∠AOE=90°.
∵∠FCA=∠AOE,
∴∠1+∠FCA=90°.
即∠OCF=90°.
∴FD是⊙O的切线.
(2)连接BC,(如图②)
∵OE⊥AC,
∴AE=EC(垂径定理).
又∵AO=OB,
∴OE∥BC且.
∴∠OEG=∠GBC(两直线平行,内错角相等),
∠EOG=∠GCB(两直线平行,内错角相等),
∴△OEG∽△CBG(AA).
∴.
∵OG=2,
∴CG=4.
∴OC=OG+GC=2+4=6.
即⊙O半径是6.
(3)∵OE=3,由(2)知BC=2OE=6,
∵OB=OC=6,
∴△OBC是等边三角形.
∴∠COB=60°.
∵在Rt△OCD中,CD=OC×tan60°=6,
∴S阴影=S△OCD﹣S扇形OBC==.
练习册系列答案
相关题目