题目内容

【题目】)如图,在ABC中,∠C=150°AC=4tanB=

1)求BC的长;

2)利用此图形求tan15°的值.

【答案】(1)16-2;(22-

【解析】试题分析:(1)过A作AD⊥BC,交BC的延长线于点D,由含30°的直角三角形性质得AD=AC=2,由三角函数求出CD=2,在Rt△ABD中,由三角函数求出BD=16,即可得出结果;

(2)在BC边上取一点M,使得CM=AC,连接AM,求出∠AMC=∠MAC=15°,tan15°=tan∠AMD=即可得出结果.

试题解析:(1)过A作AD⊥BC,交BC的延长线于点D,如图1所示:

在Rt△ADC中,AC=4,

∵∠C=150°,

∴∠ACD=30°,

∴AD=AC=2,

CD=ACcos30°=4×=2

在Rt△ABD中,tanB=

∴BD=16,

∴BC=BD-CD=16-2

(2)在BC边上取一点M,使得CM=AC,连接AM,如图2所示:

∵∠ACB=150°,

∴∠AMC=∠MAC=15°,

tan15°=tan∠AMD=.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网