题目内容
【题目】(1)、如图(1),AB∥CD,点P在AB、CD外部,若∠B=40°,∠D=15°,则∠BPD °.
(2)、如图(2),AB∥CD,点P在AB、CD内部,则∠B,∠BPD,∠D之间有何数量关系?证明你的结论;
(3)、在图(2)中,将直线AB绕点B按逆时针方向旋转一定角度交直线CD于点M,如图(3),若∠BPD=90°,∠BMD=40°,求∠B+∠D的度数.
【答案】(1)、25°;(2)、∠BPD=∠B+∠D,理由见解析;(3)、50°.
【解析】
试题分析:(1)、根据AB∥CD得出∠BOD=∠B=40°,然后根据三角形外角的性质得出∠BPD的度数;(2)、过点P作PE∥AB,从而得出AB∥PE∥CD,根据平行线的性质得出∠1=∠B,∠2=∠D,最后根据∠BPD=∠1+∠2得出答案;(3)、过点P作GP∥AB交CD于E,过点P作PF∥CD,根据平行线的性质得出∠BMD=∠GED=∠GPF=50°,∠B=∠BPG,∠D=∠DPF,则∠B+∠D=∠BPG+∠DPF,从而得出答案.
试题解析:(1)、∵AB∥CD(已知) ∴∠BOD=∠B=40°(两直线平行,内错角相等)
∴∠P=∠BOD﹣∠D=40°﹣15°=25°(等式的性质)
(2)、∠BPD=∠B+∠D.理由如下:
过点P作PE∥AB ∵AB∥CD,PE∥AB(已知) ∴AB∥PE∥CD(平行于同一直线的两条直线平行)
∴∠1=∠B,∠2=∠D(两直线平行,内错角相等) ∴∠BPD=∠1+∠2=∠B+∠D(等量代换)
(3)、过点P作GP∥AB交CD于E 过点P作PF∥CD
∵ PE∥AB
∴∠BMD=∠GED=∠GPF=50° ∠B=∠BPG(两直线平行,内错角相等)
∵ PF∥CD ∴∠D=∠DPF(两直线平行,内错角相等) ∴∠B+∠D=∠BPG+∠DPF(等量代换)
即∠B+∠D =∠BPD-∠GPF=∠BPD-∠BMD=90°- 40°=50°