题目内容

【题目】如图所示,已知AB∥CD,分别探究下面图形中∠APC,∠PAB,∠PCD的关系,请你从四个图形中任选一个,说明你所探究的结论的正确性.
①结论:(1)
(2)
(3)
(4)
②选择结论 (1)  , 说明理由.

【答案】∠APC+∠PAB+∠PCD=360°;∠APC=∠PAB+∠PCD;∠PCD=∠APC+∠PAB;∠PAB=∠APC+∠PCD
【解析】解:

①(1)过点P作PE∥AB,则AB∥PE∥CD,
∴∠1+∠PAB=180°,
∠2+∠PCD=180°,
∴∠APC+∠PAB+∠PCD=360°;
(2)过点P作直线l∥AB,
∵AB∥CD,
∴AB∥PE∥CD,
∴∠PAB=∠3,∠PCD=∠4,
∴∠APC=∠PAB+∠PCD;
(3)∵AB∥CD,
∴∠PEB=∠PCD,
∵∠PEB是△APE的外角,
∴∠PEB=∠PAB+∠APC,
∴∠PCD=∠APC+∠PAB;
(4)∵AB∥CD,
∴∠PAB=∠PFD,
∵∠PFD是△CPF的外角,
∴∠PCD+∠APC=∠PFD,
∴∠PAB=∠APC+∠PCD.
②选择结论(1),证明同上.
【考点精析】解答此题的关键在于理解平行线的性质的相关知识,掌握两直线平行,同位角相等;两直线平行,内错角相等;两直线平行,同旁内角互补.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网