题目内容
【题目】对于一个图形,通过两种不同的方法计算它的面积,可以得到一个数学等式,例如图1,可以得到这个等式,请解答下列问题:
(1)写出图2中所表示的数学等式______________;(最后结果)
(2)根据整式乘法的运算法则,通过计算验证上述等式;
(3)利用(1)中得到的结论,解决问题:若a+b+c=10,ab+ac+bc=35,求a2+b2+c2的值;
(4)小明同学用图3中x张边长为a的正方形,y张边长为b的正方形,z张边长分别为a、b的长方形纸片拼出一个面积为(5a+2b)(3a+5b)的长方形,求x+y+z的值.
【答案】(1)(a+b+c)2=a2+b2+c2+2ab+2ac+2bc;(2)证明见解析;(3)30;(4)56.
【解析】
(1)依据正方形的面积=(a+b+c)2;正方形的面积=a2+b2+c2+2ab+2ac+2bc,可得等式;
(2)运用多项式乘多项式进行计算即可;
(3)依据a2+b2+c2=(a+b+c)2-2ab-2ac-2bc,进行计算即可;
(4)依据所拼图形的面积为:xa2+yab+zb2,而(5a+2b)(3a+5b)=15a2+31ab+10b2,即可得到x,y,z的值.
(1)(a+b+c)2=a2+b2+c2+2ab+2ac+2bc
(2)证明:左边=(a+b+c)(a+b+c)
=a2+ab+ac+ab+b2+bc+ac+bc+c2,
=a2+b2+c2+2ab+2ac+2bc=右边.
(3)a2+b2+c2=(a+b+c)2-(2ab+2ac+2bc)=100-70=30
(4)(5a+2b)(3a+5b)=15a2+31ab+10b2
而x张边长为a的正方形,y张边长为b的正方形z张边长分别为a、b的长方形纸片的面积为xa2+yab+zb2
所以x=15,y=31,z=10,
所以x+y+z=56.