题目内容
【题目】如图1,D是⊙O的直径BC上的一点,过D作DE⊥BC交⊙O于E、N,F是⊙O上的一点,过F的直线分别与CB、DE的延长线相交于A、P,连结CF交PD于M,∠C=∠P.
(1)求证:PA是⊙O的切线;
(2)若∠A=30°,⊙O的半径为4,DM=1,求PM的长;
(3)如图2,在(2)的条件下,连结BF、BM;在线段DN上有一点H,并且以H、D、C为顶点的三角形与△BFM相似,求DH的长度.
【答案】(1)证明见解析;(2)PM=4﹣2;(3)满足条件的DH的值为 或.
【解析】
(1)如图1中,作PH⊥FM于H.想办法证明∠PFH=∠PMH,∠C=∠OFC,再根据等角的余角相等即可解决问题;
(2)解直角三角形求出AD,PD即可解决问题;
(3)分两种情形①当△CDH∽△BFM时,.
②当△CDH∽△MFB时,,分别构建方程即可解决问题;
(1)证明:如图1中,作PH⊥FM于H.
∵PD⊥AC,∴∠PHM=∠CDM=90°,∵∠PMH=∠DMC,∴∠C=∠MPH,
∵∠C=∠FPM,∴∠HPF=∠HPM,
∵∠HFP+∠HPF=90°,∠HMP+∠HPM=90°,∴∠PFH=∠PMH,
∵OF=OC,∴∠C=∠OFC,
∵∠C+∠CMD=∠C+∠PMF=∠C+∠PFH=90°,
∴∠OFC+∠PFC=90°,∴∠OFP=90°,
∴直线PA是⊙O的切线.
(2)解:如图1中,∵∠A=30°,∠AFO=90°,∴∠AOF=60°,
∵∠AOF=∠OFC+∠OCF,∠OFC=∠OCF,∴∠C=30°,
∵⊙O的半径为4,DM=1,
∴OA=2OF=8,CD=DM= ,
∴OD=OC﹣CD=4﹣ ,
∴AD=OA+OD=8+4﹣ =12﹣ ,
在Rt△ADP中,
DP=ADtan30°=(12﹣ )× =4 ﹣1,
∴PM=PD﹣DM=4 ﹣2.
(3)如图2中,
由(2)可知:BF=BC=4,FM=BF=4 ,CM=2DM=2,CD= ,
∴FM=FC﹣CM=4﹣2,
①当△CDH∽△BFM时, ,
∴ ,∴DH=
②当△CDH∽△MFB时,,
∴ ,∴DH= ,
∵DN= ,
∴DH<DN,符合题意,
综上所述,满足条件的DH的值为 或.