题目内容
【题目】如图,AB是☉O的直径,点C在☉O上,过点C的直线与AB的延长线交于点P,∠COB=2∠PCB.
(1)求证:PC是☉O的切线;
(2)点M是弧AB的中点,CM交AB于点N,若MN·MC=8,求☉O的直径.
【答案】(1)由题意得到半径OC⊥PC, ∴PC是⊙O的切线(2)AB=4
【解析】
试题分析(1):因为同圆中半径相等,得到相等的角,直径所对的圆周角为90°,再由已知,经过等量代换,半径与直线垂直。(2)连接AM,BM.由题意易得△ANC∽△NMA,由已知一边的长为8,根据相似三角形的相似比求之。注意的是;相似比找准对应边。通过角找边容易。1)证明:∵OA=OC,
∴∠A=∠ACO.
∴∠COB=2∠ACO.
又∵∠COB=2∠PCB,
∴∠ACO =∠PCB. ........................................................ 1分
∵AB是⊙O的直径,
∴∠ACO +∠OCB="90" .
∴∠PCB +∠OCB="90," 即OC⊥CP.
∵OC是⊙O的半径,
∴PC是⊙O的切线. ………………………2分
(2)解:连接MA、MB.(如图)
∵点M是弧AB的中点,
∴∠ACM=∠BAM.
∵∠AMC=∠AMN,
∴△AMC∽△NMA. …………………………3分
∴.
∴.
∵=8,
∴. ............................................................. 4分
∵AB是⊙O的直径,点M是弧AB的中点,
∴∠AMB=90,AM=BM=.
∴. 5分
练习册系列答案
相关题目