题目内容

【题目】给出下列命题:

在直角三角形ABC中,已知两边长为3和4,则第三边长为5;

三角形的三边a、b、c满足a2+c2=b2,则C=90°

③△ABC中,若A:B:C=1:5:6,则ABC是直角三角形;

④△ABC中,若 a:b:c=1:2:,则这个三角形是直角三角形.

其中,假命题的个数为(

A.1个 B.2个 C.3个 D.4个

【答案】B

【解析】

试题分析:利用分类讨论对进行判断;根据勾股定理的逆定理对②④进行判断;根据三角形内角和计算出C的度数,然后根据三角形分类对进行判断.

在直角三角形ABC中,已知两边长为3和4,则第三边长为5或,所以为假命题;

三角形的三边a、b、c满足a2+c2=b2,则B=90°,所以为假命题;

ABC中,若A:B:C=1:5:6,则C=×180°=90°,所以ABC是直角三角形,所以为真命题;ABC中,若 a:b:c=1:2:,则a2+c2=b2,所以这个三角形是直角三角形,所以为真命题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网