题目内容

【题目】如图1, ABC和△CDE均为等腰三角形,AC=BC, CD=CE, AC>CD, ACB=DCE=a,且点ADE在同一直线上,连结BE.

(1)求证: AD=BE.

(2)如图2,a=90°CMAEE.CM=7, BE=10, 试求AB的长.

(3)如图3,a=120°, CMAEE, BNAEN, BN=a, CM=b,直接写出AE的值(a, b 的代数式表示).

【答案】1)见解析;(226;(3+b

【解析】

1)由∠ACB=DCE可得出∠ACD=BCE,再利用SAS判定△ACD≌△BCE,即可得到AD=BE

2)由等腰直角三角形的性质可得CM=DE,同(1)可证△ACD≌△BCE,得到AD=BE,然后可求AE的长,再判断∠AEB=90°,即可用勾股定理求出AB的长;

3)由等腰三角形的性质易得∠CAB=CBA=CDE=CED=30°,根据30度所对的直角边是斜边的一半可求出DE=2CM,然后利用三角形外角性质推出∠BEN=60°,在RtBEN中即可求出BE,由于BE=AD,所以利用AE=AD+DE即可得出答案.

证明:(1)∵∠ACB=DCE

∴∠ACB-BCD=DCE-BCD,即∠ACD=BCE

在△ACD和△BCE中,

∴△ACD≌△BCESAS

AD=BE

2)∵∠DCE=90°,CD=CE

∴△DCE为等腰直角三角形,

CMDE

CM平分DE,即MDE的中点

CM=DE

DE=2CM=14

∵∠ACB=DCE

∴∠ACB-BCD=DCE-BCD,即∠ACD=BCE

在△ACD和△BCE中,

∴△ACD≌△BCESAS

AD=BE=10,∠CAD=CBE

AE=AD+DE=24

如图,设AEBC交于点H

在△ACH和△BEH中,

CAH+ACH=EBH+BEH,而∠CAH=EBH

∴∠BEH=ACH=90°,

∴△ABE为直角三角形

由勾股定理得

3)由(1)(2)可得△ACD≌△BCE
∴∠DAC=EBC
∵△ACB,△DCE都是等腰三角形,∠ACB=DCE=120°
∴∠CAB=CBA=CDE=CED=30°
CMDE
∴∠CMD=90°DM=EM
CD=CE=2CMDM=EM=CM
DE=2CM=2b
∵∠BEN=BAE+ABE=BAE+EBC+CBA=BAE+DAC+CBA=30°+30°=60°
∴∠NBE=30°
BE=2ENBN=EN

BN=a

BE=2EN==AD

AE=AD+DE=

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网