题目内容
【题目】(1)如图1,在正方形ABCD中,点E,F分别在边BC,CD上,AE,BF交于点O,∠AOF=90°.
求证:BF=AE.
(2) 如图2,正方形ABCD边长为12,将正方形沿MN折叠,使点A落在DC边上的点E处,且DE=5,求折痕MN的长。
(3) 已知点E,H,F,G分别在矩形ABCD的边AB,BC,CD,DA上,EF,GH交于点O,
∠FOH=90°,EF=4. 直接写出下列两题的答案:
①如图3,矩形ABCD由2个全等的正方形组成,则 GH=___________;
②如图4,矩形ABCD由n个全等的正方形组成,则 GH=___________;(用n的代数式表示).
【答案】(1)证明见解析(2)13(3)8, 4n
【解析】试题分析:(1)根据正方形的性质可得AB=BC,∠ABC=∠BCD=90°,再根据同角的余角相等求出∠EAB=∠FBC,然后利用“角边角”证明△ABE和△BCF全等,再根据全等三角形对应边相等证明即可;
(2)连接AE,过点N作NH⊥AD于H,根据翻折的性质可得AE⊥NM,然后求出∠DAE=∠MNH,再利用“角边角”证明△ADE和△NHM全等,根据全等三角形对应边相等可得AE=MN,然后利用勾股定理列式求出AE,从而得解;
(3)过点F作FM⊥AB于M,过点G作GN⊥BC于N,利用相似三角形对应边成比例求解即可.
试题解析:(1)证明:如图,∵四边形ABCD为正方形,
∴AB=BC,∠ABC=∠BCD=90°
∴∠ EAB+∠AEB=90°.
∵∠EOB=∠AOF=90°,∴∠FBC+∠AEB=90°,
∴∠EAB=∠FBC
∴△ABE≌△BCF,∴AE = BF
(2)连结AE,过点N作NH⊥AD,证明△MNH≌EAD
∴MN=AE
由勾股定理得AE=13, ∴MN=13
(3)8. 4n