题目内容
【题目】如图,AB∥CD,E为AC上一点,∠ABE=∠AEB,∠CDE=∠CED. 求证:BE⊥DE.
【答案】证明: ∵∠ABE=∠AEB,
∴∠A=180°﹣2∠AEB,
同理∠C=180°﹣2∠CED,
∵AB∥CD,
∴∠A+∠C=180°,
∴180°﹣2∠AEB+180°﹣2∠CED=180°,
∴∠AEB+∠CED=90°,
∴∠BED=90°,
∴BE⊥DE.
【解析】利用三角形内角和定理可把∠A和∠C分别用∠AEB和∠CED表示出来,再利用平行线的性质可求得∠AEB+∠CED=90°,可证得结论.
【考点精析】掌握平行线的性质是解答本题的根本,需要知道两直线平行,同位角相等;两直线平行,内错角相等;两直线平行,同旁内角互补.
练习册系列答案
相关题目