题目内容
【题目】如图,在长方形ABCD中,点M为CD中点,将△MBC沿BM翻折至△MBE,若∠AME = α,∠ABE = β,则 α 与 β 之间的数量关系为________.
【答案】
【解析】
如图,延长BE交AD于点N,设BN交AM于点O.由△ADM≌△BCM(SAS),推出∠DAM=∠CBM,由△BME是由△MBC翻折得到,推出∠CBM=∠EBM=(90°-β),由∠DAM=∠MBE,∠AON=∠BOM,推出∠OMB=∠ANB=90°-β,在△MBE中,根据∠EMB+∠EBM=90°,构建关系式即可解决问题.
如图,延长BE交AD于点N,设BN交AM于点O.
∵四边形ABCD是矩形,
∴∠D=∠C=90°,AD=BC,
∵DM=MC,
∴△ADM≌△BCM(SAS),
∴∠DAM=∠CBM,
∵△BME是由△MBC翻折得到,
∴∠CBM=∠EBM=(90°β),
∵∠DAM=∠MBE,∠AON=∠BOM,
∴∠OMB=∠ANB=90°β,
在△MBE中,
∵∠EMB+∠EBM=90°,
∴α+(90°β)+12(90°β)=90°,
整理得:3β2α=90°
故答案为:3β2α=90°
【题目】在一个不透明的盒子里装有只有颜色不同的黑、白两种球共50个,小颖做摸球实验,她将盒子里面的球搅匀后从中随机摸出一个球记下颜色,再把它放回盒子中,不断重复上述过程,下表是试验中的一组统计数据:
摸到球的次数 | 100 | 200 | 300 | 500 | 800 | 1000 | 3000 |
摸到白球的次数 | 65 | 124 | 178 | 302 | 481 | 599 | 1803 |
摸到白球的概率 | 0.65 | 0.62 | 0.593 | 0.604 | 0.601 | 0.599 | 0.601 |
(1)请估计当很大时,摸到白球的频率将会接近______;(精确到0.1);
(2)假如随机摸一次,摸到白球的概率P(白球)=______;
(3)试估算盒子里白色的球有多少个?