题目内容
【题目】已知正方形ABCD,P为射线AB上的一点,以BP为边作正方形BPEF,使点F在线段CB的延长线上,连接EA,EC.
(1)如图1,若点P在线段AB的延长线上,求证:EA=EC;
(2)如图2,若点P在线段AB的中点,连接AC,判断△ACE的形状,并说明理由;
(3)如图3,若点P在线段AB上,连接AC,当EP平分∠AEC时,设AB=m,BP=n,求m:n的值.
【答案】(1)见解析;(2)△ACE是直角三角形,理由见解析;(3)m:n= :1.
【解析】
(1)根据正方形的性质证明△APE≌△CFE,可得结论;
(2)分别证明∠PAE=45°和∠BAC=45°,则∠CAE=90°,即△ACE是直角三角形;
(3)设CE交AB于G,先表示出AP=PG=m-n,BG=m-(2m-2n)=2n-m,再由,即可得出结论.
(1)∵四边形ABCD和四边形BPEF是正方形,
∴AB=BC,BP=BF,
∴AP=CF,
在△APE和△CFE中,
,
∴△APE≌△CFE,
∴EA=EC;
(2)△ACE是直角三角形,理由是:
如图2,∵P为AB的中点,
∴PA=PB,
∵PB=PE,
∴PA=PE,
∴∠PAE=45°,
又∵∠BAC=45°,
∴∠CAE=90°,即△ACE是直角三角形;
(3)解,设CE交AB于G,
∵EP平分∠AEC,EP⊥AG,
∴AP=PG=m-n,BG=m-(2m-2n)=2n-m,
∵PE∥CF,
∴,
即 ,
解得:m= n,
∴m:n= :1.
故答案为:(1)见解析;(2)△ACE是直角三角形,理由见解析;(3)m:n= :1.
练习册系列答案
相关题目