题目内容
【题目】如图,已知等腰Rt△ABC,∠ACB=90°,CA=CB,以BC为边向外作等边△CBA,连接AD,过点C作∠ACB的角平分线与AD交于点E,连接BE.
(1)若AE=2,求CE的长度;
(2)以AB为边向下作△AFB,∠AFB=60°,连接FE,求证:FA+FB= FE.
【答案】(1)﹣1;(2)证明见解析
【解析】试题分析:(1)延长CE交AB于G,首先判断出△CAG是等腰直角三角形,然后找到∠EAB=∠CAB﹣∠CAD=30°,分别求出CG,EG即可解决问题;
(2)延长FB到H,使得BH=AF,连接EH.作EI⊥BF于I.由△ACE≌△BCE,推出AE=BE,推出∠EAB=∠EBC=30°,由△AFE≌△BHE,推出∠AFE=∠BHE,EF=EH,可得∠EFB=∠EBH=∠AFE=30°,又EI⊥FH,故在Rt△FEI中,∠EFI=30°,从而得出FI=FE,可得FA+FB=FE.
试题解析:解:(1)延长CE交AB于G.
∵△BAC是等腰直角三角形,CE平分∠ACB,∴CG⊥AB,∴∠AGC=90°.
∵CA=CB,∠ACB=90°,∴∠CAB=45°,∴△CAG是等腰直角三角形.
∵△BCD是等边三角形,∴BC=CD=AC,∠BCD=60°,∴∠CAD=∠CDA,∴∠ACD=∠ACB+∠BCD=150°,∴∠CAD=∠CDA=15°,∴∠EAB=∠CAB﹣∠CAD=30°.
在Rt△AEG中,∠EAG=30°,AE=2,∴AE=,EG=1.
∵CG=AG=,∴CE=CG﹣EG=﹣1.
(2)延长FB到H,使得BH=AF,连接EH.作EI⊥BF于I.
由(1)可知:AC=BC,CE平分∠ACB,∴∠ACE=∠BCE.
∵CE=CE,∴△ACE≌△BCE,∴AE=BE,∴∠EAB=∠EBC=30°.
在△AFB中,∠AFB=60°,∴∠FAB+∠FBA=120°,∴∠FAE=∠EAB+∠FAB=30°+∠FAB,∠EBH=180°﹣∠EBA﹣∠ABF=150°﹣(120°﹣∠ABF)=30°+∠FAB,∴∠EBH=∠FAE,∴△AFE≌△BHE,∴∠AFE=∠BHE,EF=EH,∴∠EFB=∠EBH=∠AFE=30°.
∵EI⊥FH,∴EI=IH,在Rt△FEI中,∠EFI=30°,∴FI= FE,∴FH=BH+FB=FE,∴FA+FB=FE.