题目内容
【题目】如图,矩形ABCD中,E是AD的中点,将△ABE沿直线BE折叠后得到△GBE,延长BG交CD于点F.若AB=6,BC=10,则FD的长为( )
A. B.4 C. D.5
【答案】C
【解析】
试题分析:根据点E是AD的中点以及翻折的性质可以求出AE=DE=EG,然后利用“HL”证明△EDF和△EGF全等,根据全等三角形对应边相等可证得DF=GF;设FD=x,表示出FC、BF,然后在Rt△BCF中,利用勾股定理列式进行计算即可得解.
解:∵E是AD的中点,
∴AE=DE,
∵△ABE沿BE折叠后得到△GBE
∴AE=EG,AB=BG,
∴ED=EG,
∵在矩形ABCD中,
∴∠A=∠D=90°,
∴∠EGF=90°,
∵在Rt△EDF和Rt△EGF中,
,
∴Rt△EDF≌Rt△EGF(HL),
∴DF=FG,
设DF=x,则BF=6+x,CF=6﹣x,
在Rt△BCF中,102+(6﹣x)2=(6+x)2,
解得x=.
故选:C.
练习册系列答案
相关题目
【题目】袋装牛奶的标准质量为100克,现抽取5袋进行检测,超过标准的质量记为正数,不足的记为负数,结果如下表所示:(单位:克)
代号 | ① | ② | ③ | ④ | ⑤ |
质量 | -5 | +3 | +9 | -1 | -6 |
其中,质量最标准的是_____号(填写序号).