题目内容
观察下列各式:1 |
1×2 |
1 |
2 |
1 |
2×3 |
1 |
2 |
1 |
3 |
1 |
3×4 |
1 |
3 |
1 |
4 |
(1)根据以上式子填空:
①
1 |
8×9 |
1 |
n×(n+1) |
(2)根据以上式子及你所发现的规律计算:
1 |
1×2 |
1 |
2×3 |
1 |
3×4 |
1 |
2007×2008 |
1 |
2008×2009 |
分析:(1)由于1:
=1-
,
=
-
,
=
-
…利用题目规律即可求出结果;
(2)首先把题目利用(1)的结论变为1-
+
-
…+
-
,然后利用有理数的加减混合运算法则计算即可求解.
1 |
1×2 |
1 |
2 |
1 |
2×3 |
1 |
2 |
1 |
3 |
1 |
3×4 |
1 |
3 |
1 |
4 |
(2)首先把题目利用(1)的结论变为1-
1 |
2 |
1 |
2 |
1 |
3 |
1 |
2008 |
1 |
2009 |
解答:解:(1)①
=
-
;
②
=
-
(n是正整数);
(2)
+
+
…+
+
=1-
+
-
…+
-
=1-
=
.
1 |
8×9 |
1 |
8 |
1 |
9 |
②
1 |
n×(n+1) |
1 |
n |
1 |
n+1 |
(2)
1 |
1×2 |
1 |
2×3 |
1 |
3×4 |
1 |
2007×2008 |
1 |
2008×2009 |
=1-
1 |
2 |
1 |
2 |
1 |
3 |
1 |
2008 |
1 |
2009 |
=1-
1 |
2009 |
=
2008 |
2009 |
点评:此题主要考查了有理数的混合运算,解题时首先正确理解题目中隐含的规律,然后利用规律把题目变形,从而使计算变得比较简便.
练习册系列答案
相关题目