题目内容

【题目】如图,是自动喷灌设备的水管,点在地面,点高出地面米.在处有一自动旋转的喷水头,在每一瞬间,喷出的水流呈抛物线状,喷头与水流最高点的连线与水平线成角,水流的最高点与喷头高出米,在如图的坐标系中,水流的落地点到点的距离是________米.

【答案】

【解析】

根据所建坐标系,易知B点坐标和顶点C的坐标,设抛物线解析式为顶点式,可求表达式,求AD长就是求y=0是x的值.

如图,建立直角坐标系,过C点作CE⊥y轴于E,过C点作CF⊥x轴于F,
∴B(0,1.5),
∴∠CBE=45°,
∴EC=EB=2米,
∵CF=AB+BE=2+1.5=3.5,
∴C(2,3.5)
设抛物线解析式为:y=a(x-2)2+3.5,
又∵抛物线过点B,
∴1.5=a(0-2)2+3.5
∴a=-
∴y=-(x-2)2+3.5=-x2+2x+
∴所求抛物线解析式为:y=-x2+2x+
∵抛物线与x轴相交时,y=0,

∴x1=,x2=(舍去)
∴D(,0)
∴水流落点D到A点的距离为:米.

故答案为:

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网