题目内容
【题目】为更新果树品种,某果园计划新购进A、B两个品种的果树苗栽植培育,若计划购进这两种果树苗共45棵,其中A种苗的单价为7元/棵,购买B种苗所需费用y(元)与购买数量x(棵)之间存在如图所示的函数关系.
(1)求y与x的函数关系式;
(2)若在购买计划中,B种苗的数量不超过35棵,但不少于A种苗的数量,请设计购买方案,使总费用最低,并求出最低费用.
【答案】
(1)
解:设y与x的函数关系式为:y=kx+b,
把(20,160),(40,288)代入y=kx+b得:
解得:
∴y=6.4x+32
(2)
解:∵B种苗的数量不超过35棵,但不少于A种苗的数量,
∴
∴22.5≤x≤35,
设总费用为W元,则W=6.4x+32+7(45﹣x)=﹣0.6x+347,
∵k=﹣0.6,
∴y随x的增大而减小,
∴当x=35时,W总费用最低,W最低=﹣0.6×35+347=137(元)
【解析】(1)利用得到系数法求解析式,列出方程组解答即可;(2)根据所需费用为W=A种树苗的费用+B种树苗的费用,即可解答.此题主要考查了一次函数的应用,根据一次函数的增减性得出费用最省方案是解决问题的关键.
练习册系列答案
相关题目
【题目】某校在践行“社会主义核心价值观”演讲比赛中,对名列前20名的选手的综合分数m进行分组统计,结果如表所示:
组号 | 分组 | 频数 |
一 | 6≤m<7 | 2 |
二 | 7≤m<8 | 7 |
三 | 8≤m<9 | a |
四 | 9≤m≤10 | 2 |
(1)求a的值;
(2)若用扇形图来描述,求分数在8≤m<9内所对应的扇形图的圆心角大小;
(3)将在第一组内的两名选手记为:A1、A2 , 在第四组内的两名选手记为:B1、B2 , 从第一组和第四组中随机选取2名选手进行调研座谈,求第一组至少有1名选手被选中的概率(用树状图或列表法列出所有可能结果).